Source code for cooper.optim.extra_optimizers

"""Optimizers based on extra-gradient."""

import math
from collections.abc import Iterable
from typing import Callable, List, Tuple

import torch

# -----------------------------------------------------------------------------
# Implementation of ExtraOptimizers contains minor edits on source code from:
# https://github.com/GauthierGidel/Variational-Inequality-GAN/blob/master/optim/extragradient.py
# -----------------------------------------------------------------------------

#  MIT License

# Copyright (c) Facebook, Inc. and its affiliates.

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# written by Hugo Berard (berard.hugo@gmail.com) while at Facebook.


[docs]class ExtragradientOptimizer(torch.optim.Optimizer): """Base class for optimizers with extrapolation step. Args: params: an iterable of :class:`torch.Tensor`\\s or :class:`dict`\\s. Specifies what Tensors should be optimized. defaults: a dict containing default values of optimization options (used when a parameter group doesn't specify them). """ def __init__(self, params: Iterable, defaults: dict): super(ExtragradientOptimizer, self).__init__(params, defaults) self.params_copy: List[torch.nn.Parameter] = [] def update(self, p, group): raise NotImplementedError
[docs] def extrapolation(self): """ Performs the extrapolation step and saves a copy of the current parameters for the update step. """ # Check if a copy of the parameters was already made. is_empty = len(self.params_copy) == 0 for group in self.param_groups: for p in group["params"]: u = self.update(p, group) if is_empty: # Save the current parameters for the update step. Several # extrapolation step can be made before each update but only # the parameters before the first extrapolation step are # saved. self.params_copy.append(p.data.clone()) if u is None: continue # Update the current parameters p.data.add_(u)
[docs] def step(self, closure: Callable = None): """Performs a single optimization step. Args: closure: A closure that reevaluates the model and returns the loss. """ if len(self.params_copy) == 0: raise RuntimeError("Need to call extrapolation before calling step.") loss = None if closure is not None: loss = closure() i = -1 for group in self.param_groups: for p in group["params"]: i += 1 u = self.update(p, group) if u is None: continue # Update the parameters saved during the extrapolation step p.data = self.params_copy[i].add_(u) # Free the old parameters self.params_copy = [] return loss
[docs]class ExtraSGD(ExtragradientOptimizer): """ Implements stochastic gradient descent with extrapolation step (optionally with momentum). Nesterov momentum is based on the formula from :cite:t:`sutskever2013initialization`. Args: params: Iterable of parameters to optimize or dicts defining parameter groups. lr: Learning rate. momentum: Momentum factor. weight_decay: Weight decay (L2 penalty). dampening: Dampening for momentum. nesterov: If ``True``, enables Nesterov momentum. .. note:: The implementation of SGD with Momentum/Nesterov subtly differs from :cite:t:`sutskever2013initialization`. and implementations in some other frameworks. Considering the specific case of Momentum, the update can be written as .. math:: v = \\rho \\cdot v + g \\\\ p = p - lr \\cdot v where :math:`p`, :math:`v`, :math:`g` and :math:`\\rho` denote the parameters, gradient, velocity, and momentum respectively. This is in contrast to :cite:t:`sutskever2013initialization` and other frameworks which employ an update of the form .. math:: v &= \\rho \\cdot v + lr \\cdot g \\\\ p &= p - v The Nesterov version is analogously modified. """ def __init__( self, params: Iterable, lr: float, momentum: float = 0, dampening: float = 0, weight_decay: float = 0, nesterov: bool = False, ): if lr is None or lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, ) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super(ExtraSGD, self).__init__(params, defaults) def __setstate__(self, state): super(torch.optim.SGD, self).__setstate__(state) for group in self.param_groups: group.setdefault("nesterov", False) def update(self, p, group): weight_decay = group["weight_decay"] momentum = group["momentum"] dampening = group["dampening"] nesterov = group["nesterov"] if p.grad is None: return None d_p = p.grad.data if weight_decay != 0: d_p.add_(weight_decay, p.data) if momentum != 0: param_state = self.state[p] if "momentum_buffer" not in param_state: buf = param_state["momentum_buffer"] = torch.zeros_like(p.data) buf.mul_(momentum).add_(d_p) else: buf = param_state["momentum_buffer"] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf return -group["lr"] * d_p
[docs]class ExtraAdam(ExtragradientOptimizer): """Implements the Adam algorithm with an extrapolation step. Args: params: Iterable of parameters to optimize or dicts defining parameter groups. lr : Learning rate. betas: Coefficients used for computing running averages of gradient and its square. eps : Term added to the denominator to improve numerical stability. weight_decay: Weight decay (L2 penalty). amsgrad: Flag to use the AMSGrad variant of this algorithm from :cite:t:`reddi2018amsgrad`. """ def __init__( self, params: Iterable, lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, amsgrad: bool = False, ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad ) super(ExtraAdam, self).__init__(params, defaults) def __setstate__(self, state): super(ExtraAdam, self).__setstate__(state) for group in self.param_groups: group.setdefault("amsgrad", False) def update(self, p, group): if p.grad is None: return None grad = p.grad.data if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) amsgrad = group["amsgrad"] state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p.data) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 if group["weight_decay"] != 0: grad = grad.add(group["weight_decay"], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: denom = exp_avg_sq.sqrt().add_(group["eps"]) bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 return -step_size * exp_avg / denom